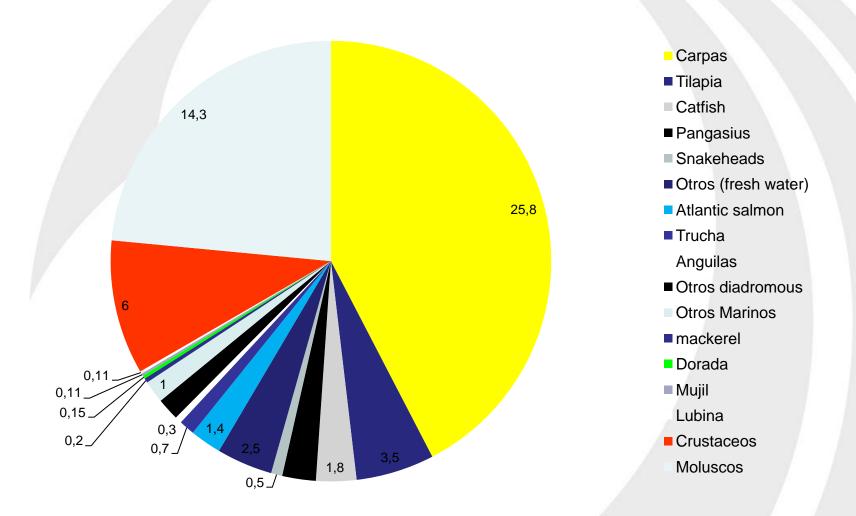
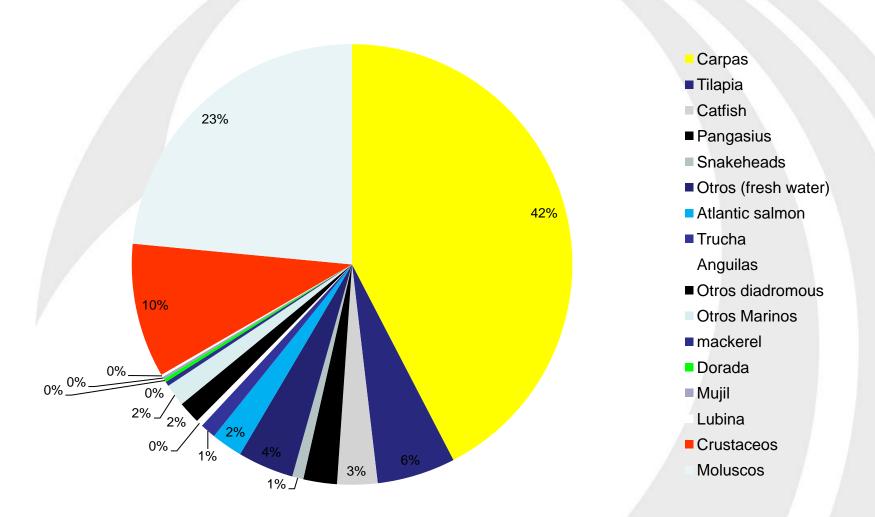
PRESENT I FUTUR DE LA NUTRICIO AQÜICOLA. REPTES I NECESSITATS

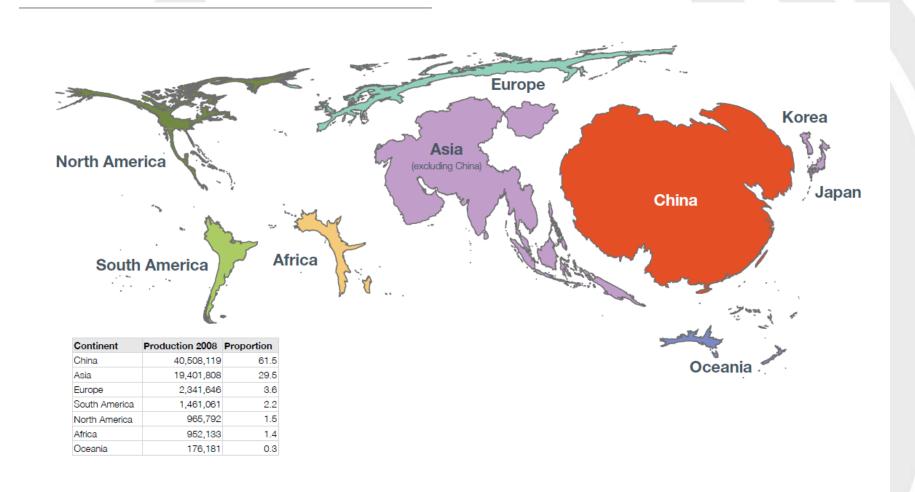

Ramon Fontanillas, *Skretting Aquaculture Research Centre, Stavanger, Norway*

Retos de futuro

- Independencia de materias primas de origen marino
- Interaccion Nutricion Salud
- Desarrollo de nuevas especies

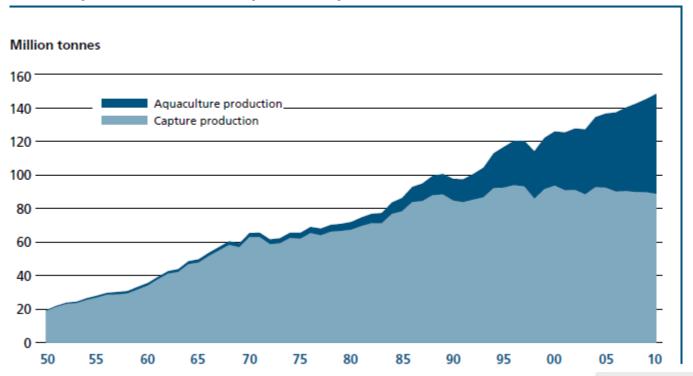

Produccion de especies en acuicultura en 2010 (MT)

Total: > 60 MT

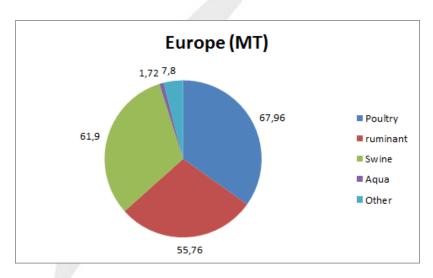


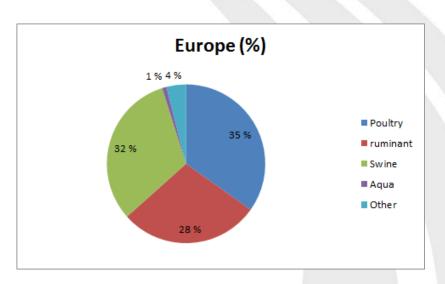
FAO, 2012

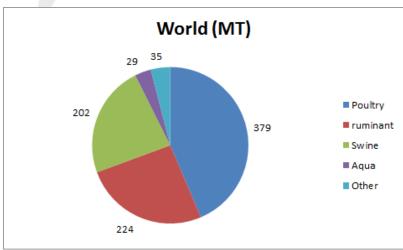
Produccion de especies en acuicultura en 2010 (%)

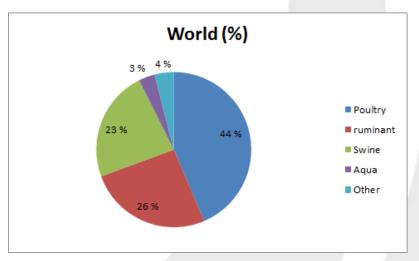


Donde se produce

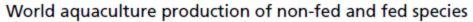


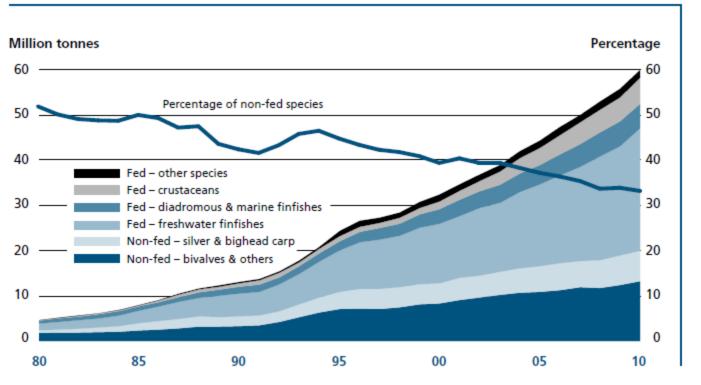

Contribucion de la acuicultura al consumo de pescado


World capture fisheries and aquaculture production

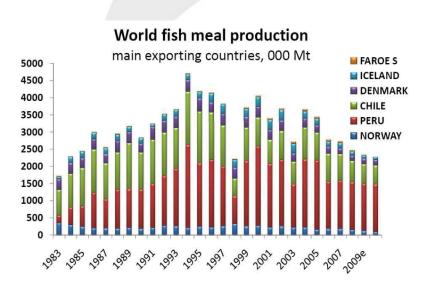


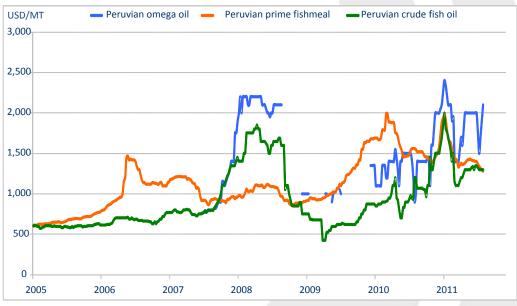
Produccion de Pienso (2011)





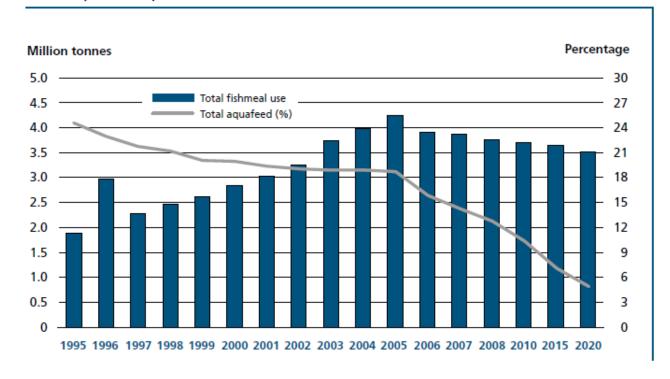
Produccion acuicola fed/non fed


Take home


- Especies producidas en acuiultura representan un 40%
- Existe un gran potencial en el desarrollo de nuevas especies
- En la actualidad el 70% de las especies producidas ya se alimentan con pienso compuesto (potencial para el desarrollo de nuevos piensos pero tambien mayor presion sobre materias primas)

Move away from marine resources

Piensos para Acuicultura


- La harina y aceite de pescado han sido tradicionalmente las materias primas principales. Desde el punto de vista nutricional son dos materias primas excelentes.
- Pero son recursos limitados y sometidos a fluctuaciones de precios

Uso de harina de pescado en acuicultura

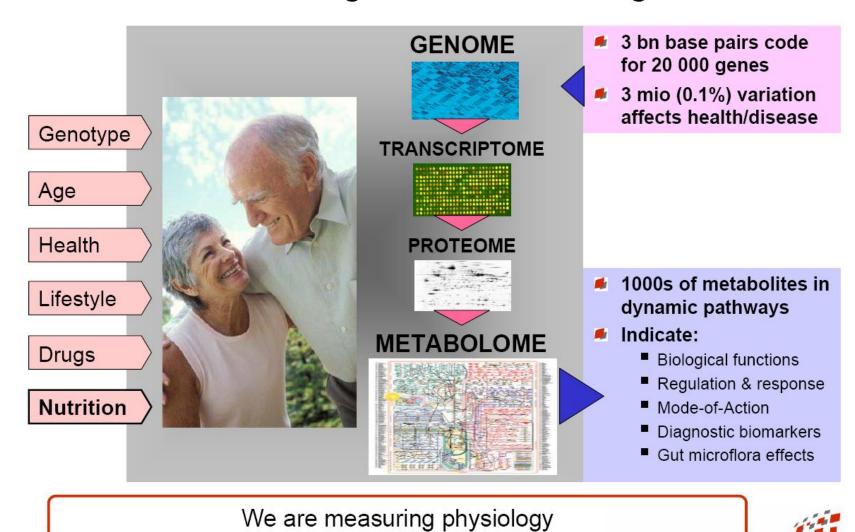
Actual and predicted reduction in fishmeal use relative to the global production of compound aquafeed

Source: Adapted from Tacon, A.G.J., Hasan, M.R. and Metian, M. 2011. Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fisheries and Aquaculture Technical Paper No. 564. Rome, FAO. 87 pp.

Uso de harina de pescado en acuicultura

Reduction in fishmeal inclusion in compound aquafeed of different fish species and species groups

	Fishmeal inclusion in compound aquafeed						
Species/species group	1995	2008	2020*				
		(Percentage)					
Fed carp	10	3	1				
Tilapias	10	5	1				
Catfishes	5	7	2				
Milkfish	15	5	2				
Miscellaneous freshwater fishes	55	30	8				
Salmons	45	25	12				
Trouts	40	25	12				
Eels	65	48	30				
Marine fishes	50	29	12				
Marine shrimps	28	20	8				
Freshwater crustaceans	25	18	8				
Projected.		19,5	8,7				


Source: Adapted from Tacon, A.G.J., Hasan, M.R. and Metian, M. 2011. Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fisheries and Aquaculture Technical Paper No. 564. Rome, FAO. 87 pp.

Sustitucion de harina de pescado

- La harina de pescado se puede sustituir por:
 - Proteinas de origen animal (Canada, Australia, Chile, Japan, EU en 2013)
 - Proteinas de origen vegetal
- La sustitucion con ingredientes vegetales se ha demostrado mas dificil.
 - El nivel min. de harina de pescado en salmonidos es 10-15%.
 - Se ha podido vencer obstaculos (ANFs, disponibilidad de nutrientes), pero no podemos llegar a < 10% de forma consistente

Metabolomics

Metabolome: Assessing the "State of the Organism"

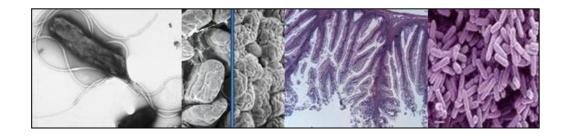
metanomics health

Perfil Metabólico

Group	15 %	15% +	15 %	15%+	Group	15 %	15% •	15 %	15% +	Group	15 %	15%+	15 %	15% +
Tank	all	all	all	all	Tank	all	all	all	all	Tank	all	all	all	all
Reference group	30%	30 %	30%	30 %	Reference group	30%	30 %	30 %	30 %	Reference group	30%	30 %	30 %	30 %
Outlier	all data	all data	all data	all data	Outlier	all data	all data	all data	all data	Outlier	all data	all data	all data	all data
Metabolite	ratio of median	ratio of median	p-value of t-test	p-value of t-test	Metabolite	ratio of median	ratio of median	p-value of t-test	p-value of t-test	Metabolite	ratio of median	ratio of median	p-value of t-test	p-value of t-test
Arginine	0.723	0.550	1.40E-03	2.71E-03	Taurocholic acid	0.565	0.427	6.61E-01	4.37E-01	Phosphatidylcholine (C18:0, C22:6) (propose	0.974	0.995	1.52E-03	3.92E-01
Aspartate	1.296	1.100	2.56E-02	9.45E-01	14-Methylhexadecanoic acid		0.761	3.64E-11	5.66E-07	Phosphatidylcholine (C18:1, C18:2) (proposed	1.058	1.156	1.67E-03	2.87E-07
Cysteine (minor: Cystine)	1.569	1.207	4.78E-04	4.29E-02	Arachidonic acid (C20:cis[5,8,11,14]4)	0.801	0.878	2.56E-05	1.57E-03	Phosphatidylcholine No 02 (proposed)	1.000	0.997	4.45E-01	9.71E-01
Glutamate	1.651	1.248	3.94E-05	3.55E-03	Behenic acid (C22:0)	0.637	0.865	1.81E-05	2.97E-01	Phosphatidylcholine No 03 (proposed)	1.013	1.023	8.66E-02	3.33E-02
Glutamine	1.574	1.483	6.86E-03	1.50E-02	Dodosahexaenoid acid (C22:dis[4,7,10,10]	0.728	0.948	1.69E-07	3.08E-01	Serine, lipid fraction	0.834	0.906	1.56E-01	2.38E-01
Glycine	0.933	0.874	4.32E-01	1.97E-01	Eicosadienoic acid (C20:2) No 02 (plau	0.734	1.058	1.19E-05	2.11E-01	Ceramide (d18:1, C24:0) (proposed)	0.646	0.716	1.42E-05	1.60E-02
Histidine	1.407	0.930	1.24E-01	3.55E-01	Eicosaenoic acid (C20:1) No 02 (plausit	0.736	1.040	3.74E-07	2.06E-01	Ceramide (d18:1, C24:1) (proposed) (minor: Ce	0.805	0.846	1.91E-04	2.87E-03
Isoleucine	1.165	0.991	2.58E-01	8.82E-01	Eicosanoic acid (C20:0)	0.634	0.894	5.30E-07	1.78E-01	erythro-Dihydrosphingosine	0.686	0.990	8.01E-05	5.60E-01
Leucine	1.209	1.026	1.67E-01	9.03E-01	Eicosapentaenoic acid (C20:cis[5,8,11,1-	0.795	0.956	7.95E-07	2.90E-01	erythro-Sphingosine (minor: Sphingolipids)	0.767	0.898	1.71E-05	3.65E-01
Lysine	1.044	0.991	3.60E-01	7.53E-01	Eicosenoic acid (C20:cis[11]1)	0.627	0.830	3.97E-08	1.26E-02	O-Methylsphingosine No1 (plausible) (minor:	0.687	0.902	1.74E-05	4.06E-01
Methionine	0.964	0.739	8.95E-01	6.62E-02	Elaidic acid (C18:trans[9]1)	0.723	0.974	1.33E-05	1.64E-01	O-Methylsphingosine No2 (plausible) (minor:	0.717	0.897	9.04E-06	3.01E-01
Phenylalanine	0.936	0.809	7.63E-01	3.69E-01	Heptadecanoic acid (C17:0)	0.684	0.888	9.05E-09	6.75E-02	Sphingomyelin (d18:1, C16:0) (proposed)	1.056	1.098	1.80E-01	7.66E-02
Proline	1.710	2.130	1.11E-05	1.97E-04	Lignoceric acid (C24:0)	0.586	0.851	6.42E-07	1.42E-01	Sphingomyelin No 02 (proposed)	0.894	0.976	5.95E-06	2.20E-01
Serine	0.910	0,793	2.38E-01	1.76E-01	Linoleic acid (C18:cis[9,12]2)	0.696		8.59E-04	2.37E-02	Sphingosine-1-phosphate	0.713	1,032	2.51E-04	7.39E-01
Threonine	1.014	0.706	2.61E-01	1.23E-01	Linolenic acid (C18:cis[9,12,15]3)	0.626		8.29E-05	8.64E-01	threo-Sphingosine (minor: Sphingolipids)	0.797	0.863	3.89E-05	2.52E-01
Tyrosine	0.892	0.862	7.91E-02	2.76E-01	Myristic acid (C14:0)	0.676		1.25E-04	5.84E-02	2-Hydroxybutyrate	1,236	1,342	3,44E-03	1.94E-04
Valine	1.144	0.972	3,63E-01		Nervonic acid (C24:cis[15]1)	0.642		4.08E-10	1.18E-04	Citrate (minor: Isocitrate)	1.716	1.652	1.36E-07	5.09E-08
5-Oxoproline (minor: Folic acid, Gluta	1,438	1,196	1.30E-04		Oleic acid (C18:cis[9]1)	0.697		6.57E-05	8.46E-01	Fumarate (minor: Maleate)	1.516	1.382	1.13E-04	1.22E-03
Citrulline	0.927	0.906	5.97E-01		Palmitic acid (C16:0)	0.710		4.39E-07	4.49E-01	, ,	0.922	0.934	1.05E-03	1.17E-02
Custathionine	1.558	1,164	1.39E-04	4.88E-02	, ,	0.685		2.06E-03	8.26E-01	Glycerate	1.131	1.325	5.50E-01	3.04E-01
-	1.515	1.367		1.73E-01	Palmitoleic acid (C16:cis[9]1)	0.766		1.19E-05	3.51E-01	Lactaldehyde (plausible)	1.595	1,375	1.10E-11	4.06E-08
Cystine					Stearic acid (C18:0)					Lactate				
Indole-3-lactic acid (proposed)	1.061	0.869	9.48E-01	2.76E-01	DAG (C18:1, C18:2) (proposed)	0.650		7.63E-10	5.68E-09	Malate	1.984	1.664	1.65E-06	1.86E-04
Ketoleucine (proposed)	0.817	0.893	7.79E-01	5.95E-01	TAG (C16:0, C16:1) (proposed)	0.873		1.21E-01	9.58E-02	Pyruvate (minor: Phosphoenolpyruvate (PEF	1.113	1.187	3.27E-01	2.86E-01
O-Phosphotyrosine	0.906	0.942	7.18E-02		TAG (C16:0, C18:2) (proposed)	0.979		6.66E-01	5.74E-01	Succinate (proposed)	0.994	0.999	7.07E-01	8.67E-01
Ornithine (minor: Arginine, Citrulline)	0.823	0.701		2.79E-02	TAG (C18:1, C18:2) (proposed)	1.000	1.114	5.61E-01	6.35E-01	Cortisol	1.057	1.397	3.34E-01	6.00E-02
trans-4-Hydroxyproline	0.684	0.673	3.30E-08		TAG (C18:2, C18:2) (proposed)	0.976		3.76E-01	1.01E-01	Astaxanthin	1.140	0.678	3.30E-01	4.55E-04
Urea	0.650	0.548	3.74E-06	6.64E-07	TAG (C18:2, C18:3) (proposed)	0.944		1.28E-01	4.17E-01	beta-Alanine (minor: Pantothenic acid)	1.255	0.999	2.00E-02	7.14E-01
Erythrol	0.856	0.981	1.47E-03		3-O-Galactosylglycerol (plausible)	1.686	1.318	2.92E-06	1.80E-03	beta-Aminoisobutyrate	0.551	0.404	4.59E-07	1.38E-06
Erythronic acid	0.885	0.920	7.49E-03	6.04E-03	Digalactosylglycerol (plausible)	7.398		1.24E-10	5.75E-09	beta-Sitosterol	0.908	0.975	1.62E-01	8.59E-01
Glucose	1.087	1.107	1.47E-01	1.09E-01	Galactose, lipid fraction	0.825	0.852	7.63E-03	1.86E-01	Campesterol	0.761	0.746	1.51E-03	2.56E-02
Glucose-1-phosphate (minor: Glucos	1.422	1.281	2.84E-03	3.17E-02	Glucose, lipid fraction	0.739	0.989	5.51E-02	7.63E-01	Creatine	1.398	1.168	6.77E-03	7.68E-02
Glucose-6-phosphate (minor: Fructo	0.892	0.608	3.78E-01	6.16E-07	myo-Inositol, lipid fraction	0.838	0.942	1.11E-04	5.30E-02	Creatinine	0.384	0.329	1.73E-06	6.50E-05
Glucuronic acid	1.011	1.175	3.90E-01	6.36E-03	N-Acetylneuraminic acid, lipid fraction	0.673	0.901	2.43E-05	1.54E-01	Glycerol, polar fraction	1.507	1.335	7.22E-06	3.20E-04
Maltose	1.210	0.885	7.94E-02	4.57E-01	Choline plasmalogen (C18, C20:4) (prop	0.807	0.906	7.37E-04	5.43E-02	Glycerol-3-phosphate, polar fraction	0.857	0.712	7.38E-01	1.21E-03
Mannose	1.080	1.130	2.07E-01	2.67E-01	Glycerol phosphate, lipid fraction	0.751	0.901	2.44E-11	1.22E-02	Glycolate	0.936	0.986	4.42E-01	8.29E-01
myo-Inositol	0.861	1.690	2.01E-03	3.82E-07	Lysophosphatidylcholine (C16:0) (propo	0.930	0.972	1.07E-05	6.53E-02	Hippuric acid	1.684	2.211	1.92E-03	1.60E-04
myo-lnositol-2-phosphate (minor: my	0.466	0.660	2.15E-08	3.41E-04	Lysophosphatidylcholine (C18:0) (propo	0.823	0.856	7.31E-06	3.22E-03	O-Phosphoethanolamine	0.586	0.424	4.02E-03	1.18E-06
Ribose	0.974	0.763	6.18E-01	4.64E-02	Lysophosphatidylcholine (C18:1) (propo	0.729	0.843	1.33E-07	3.45E-04	p-Coumaric acid	0.977	1,151	9.90E-01	1.24E-01
scullo-inositol	0.487	0.929	1,89E-15	1.74E-01	Lysophosphatidylcholine (C18:2) (propo	0.891		1.41E-05	5.35E-03	Phosphate (inorganic and from organic phos	0.741	0.628	1.08E-04	5,12E-10
Sorbitol (minor: Galactitol, Mannitol)	1.356	1.778	8.16E-05	2.09E-09	Lysophosphatidylcholine (C20:4) (prop		0.865	5.62E-05	6.61E-05	Pinitol	1.023	1.347	4.02E-01	8.03E-04
Sucrose	0.785	0.849		9.46E-02	myo-Inositol-1-phosphate, lipid fraction	0.806		3.79E-04	3.85E-02	Putrescine (minor: Agmatine)	1.236	1.077	4.60E-03	2.61E-01
Cholesta-2,4-dien (plausible)	0.676	0.917	8.95E-08	5.06E-02	myo-Inositol-2-phosphate, lipid fraction	0.840		9.14E-03	1.69E-01	Sarcosine	1.029	1.110	4.29E-01	9.93E-02
Cholestenol No 02 (proposed)	0.696	0.878	1.96E-06	1.33E-01	Phosphate, lipid fraction	0.758		2.40E-12	9,89E-03	Taurine	0.867	0.563	1.68E-01	6.40E-05
Cholesterol	0.636	0.928	4.58E-06	3.09E-01	Phosphatidylcholine (C16:0, C16:0) (pro	1,194	1.064	5.05E-03	4.52E-01	Zeaxanthin	0.847	1.621	7.60E-02	1.27E-02
	0.772	0.928	1.30E-03	5.97E-01			1.256	2.40E-06	8.14E-14		0.847	0.030	6.13E-24	7.22E-25
Glycerol, lipid fraction					Phosphatidylcholine (C16:0, C18:2) (pro	1.106				2'-Deoxycytidine				
Hentriacontane	0.702	0.898	4.40E-07	1.35E-01	Phosphatidylcholine (C16:0, C20:4) (pro	1.064	1.024	4.17E-07	6.14E-03	Hypoxanthine (minor: Inosine)	1.749	1.810	6.05E-09	4.65E-07
Hexadecanol	0.747	0.891	8.33E-05	2.83E-01	Phosphatidylcholine (C16:1, C18:2) (prop	1.140	1.163	8.92E-05	1.24E-04	Inosine	1.557	1.640	1.39E-06	3.91E-07
Pentadecanol	0.681	0.815	6.90E-05	1.06E-02	Phosphatidylcholine (C18:0, C18:1) (prop	0.942	1.006	4.35E-02	6.67E-01	Uracil	1.752	1.561	1.42E-05	1.04E-03

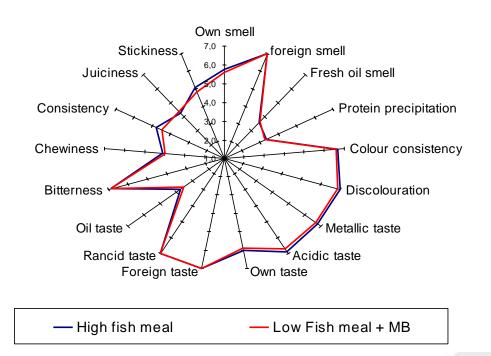
El"Perfil Metabólico" muestra que los metabolitos circulantes cambian en la dirección correcta

238 metabolitos analizados en total



Indicadores de Salud

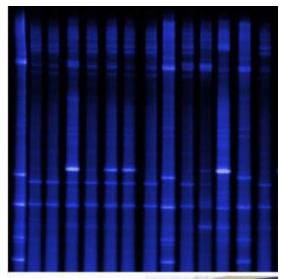
No se observaron efectos negativos sobre:


- Histología
- Microflora intestinal
- Fosfatasa Alcalina
- Coenzima Q10
- Colesterol
- ASAT

- ALAT
- Trigliceridos
- Proteina
- Albumina
- Urea
- Minerales (P, Ca, K, Cl)

Calidad de filete

- Evaluación sensorial
- Pigmentación y color
- Grasa filete
- Textura


Proximos retos

- Diseño de dietas independientes de materias primas de origen marino, para la mayoria de especies
 - Utilizacion de materias primas proteicas de origen animal
 - Nuevas materias primas vegetales concentradas
- Desarrollo de materias primas ricas en acidos grasos esenciales (EPA & DHA)
- Nuevas especies (desde la reproduccion hasta el pienso final)

Nutricion-Salud

El objetivo esta en la prevencion

- De la terapia a la profilaxis
- Multifactorial:
 - Epidemiologia
 - Bioseguridad
 - Sweleccion genetica
 - Vacunas
 - Dietas funcionales
 - Management integral

NUTRICIÓN DENTRO DE GESTIÓN SANITARIA

¿Nutrición adaptada?

A medioambiente y salud

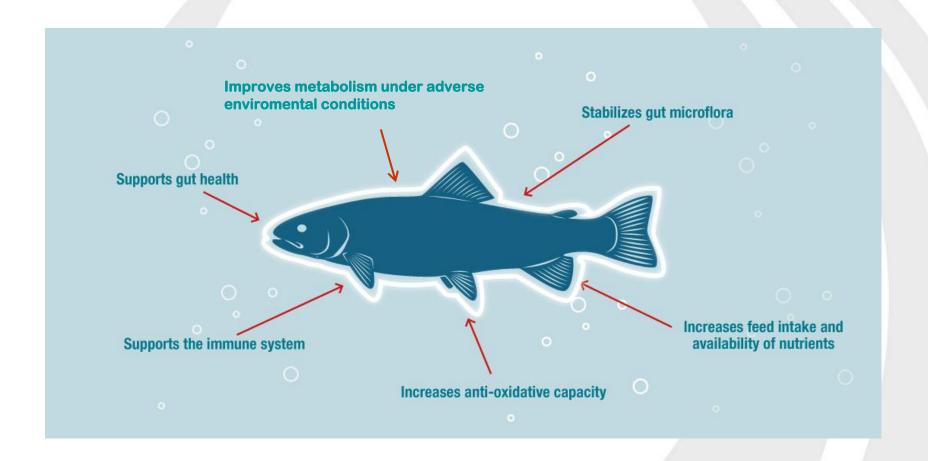
Óptima: Condiciones normales de cultivo

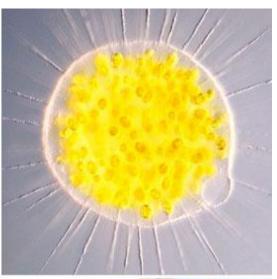
Funcional: "Dietas salud"

- Preventiva: Preparación ante estrés, riesgo de enfermedad o condiciones ambientales adversas
- Específica: Apoyo nutricional para superar enfermedades o condiciones ambientales adversas

SOPORTE NUTRICIONAL EN PISCICULTURA

¿Cómo podemos ayudar al pez **nutricionalmente** para **prevenir** enfermedades y/o **minimizar** sus efectos adversos?


Conocimiento de respuestas fisiológicas de los animales ante situaciones de enfermedad y ambientales adversas (frío, calor)


Investigación básica sobre la actividad de diferentes nutrientes, aditivos y compuestos funcionales

Desarrollo de dietas salud preventivas Modos de accion

Desarrollo de una dieta Salud

- 1. Screening in vitro
- 2. Screening in vivo
- 3. Ensayos de documentacion:
 - Efectos
 - Resistencia a enfermedades
- 4. Ensayos de campo

ADITIVOS FUNCIONALES

Una amplia lista

- Probióticos
- Prebióticos: MOS, FOS
- ✓ Inmunoestimulantes: Betaglucanos, LPS, alginatos
- Nucleótidos
- ✓ Ácidos orgánicos: Cítrico, fórmico, acético, láctico
- Extractos de plantas
- ✓ Vitaminas: A, B, C, E
- Minerales

ADITIVOS FUNCIONALES

Requieren registro para su uso industral ...

European Union Register of Feed Additives pursuant to Regulation (EC) No 1831/2003

Appendixes 3b & 4.

Annex: List of additives

(Status: Released 17 january 2011.)

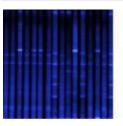
Directorate D - Animal Health and Welfare

Unit D2 – Feed

UNA COSA MÁS

Las "alegaciones salud" de los piensos deben justificarse

REGLAMENTO (CE) Nº 767/2009 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 13 de julio de 2009


sobre la comercialización y la utilización de los piensos, por el que se modifica el Reglamento (CE) nº 1831/2003 y se derogan las Directivas 79/373/CEE del Consejo, 80/511/CEE de la Comisión, 82/471/CEE del Consejo, 83/228/CEE del Consejo, 93/74/CEE del Consejo, 93/113/CE del Consejo y 96/25/CE del Consejo y la Decisión 2004/217/CE de la Comisión

Necesidad de Dosier Técnico

Investigación y documentación son imprescindibles para el desarrollo y validación de dietas salud

GRACIES!

CURIOSITY FOR A SUSTAINABLE AQUACULTURE

